Publications
2021
Baatz, R., et al. (2021), Reanalysis in Earth System Science: Toward Terrestrial Ecosystem Reanalysis, Reviews of Geophysics, 59(3), e2020RG000715, doi: https://doi.org/10.1029/2020RG000715
Bagatinsky, V. A., and N. A. Diansky (2021), Variability of the North Atlantic Thermohaline Circulation in Different Phases of the Atlantic Multidecadal Oscillation from Ocean Objective Analyses and Reanalyses, Izv. Atmos. Ocean. Phys., 57(2), 208-219, doi: https://doi.org/10.1134/S000143382102002X
Bagnell, A., and T. DeVries (2021), 20th century cooling of the deep ocean contributed to delayed acceleration of Earth’s energy imbalance, Nature Communications, 12(1), 4604, doi: https://doi.org/10.1038/s41467-021-24472-3
Barnoud, A., et al. (2021), Contributions of Altimetry and Argo to Non-Closure of the Global Mean Sea Level Budget Since 2016, Geophys. Res. Lett., 48(14), e2021GL092824, doi: https://doi.org/10.1029/2021GL092824
Barton, N., et al. (2021), The Navy’s Earth System Prediction Capability: A New Global Coupled Atmosphere-Ocean-Sea Ice Prediction System Designed for Daily to Subseasonal Forecasting, Earth and Space Science, 8(4), e2020EA001199, doi: https://doi.org/10.1029/2020EA001199
Bashmachnikov, I. L., A. M. Fedorov, P. A. Golubkin, A. V. Vesman, V. V. Selyuzhenok, N. V. Gnatiuk, L. P. Bobylev, K. I. Hodges, and D. S. Dukhovskoy (2021), Mechanisms of interannual variability of deep convection in the Greenland sea, Deep Sea Research Part I: Oceanographic Research Papers, 174, 103557, doi: https://doi.org/10.1016/j.dsr.2021.103557
Belonenko, T. V., V. A. Zinchenko, A. M. Fedorov, M. V. Budyansky, S. V. Prants, and M. Y. Uleysky (2021), Interaction of the Lofoten Vortex with a Satellite Cyclone, Pure and Applied Geophysics, 178(1), 287-300, doi: https://doi.org/10.1007/s00024-020-02647-1
Bisson, K. M., E. Boss, P. J. Werdell, A. Ibrahim, and M. J. Behrenfeld (2021), Particulate Backscattering in the Global Ocean: A Comparison of Independent Assessments, Geophys. Res. Lett., 48(2), e2020GL090909, doi: https://doi.org/10.1029/2020GL090909
Boutin, J., et al. (2021), Satellite-Based Sea Surface Salinity Designed for Ocean and Climate Studies, Journal of Geophysical Research: Oceans, 126(11), e2021JC017676, doi: https://doi.org/10.1029/2021JC017676
Brown, P. J., et al. (2021), Circulation-driven variability of Atlantic anthropogenic carbon transports and uptake, Nat. Geosci., 14(8), 571-577, doi: https://doi.org/10.1038/s41561-021-00774-5
Camus, L., et al. (2021), Autonomous Surface and Underwater Vehicles as Effective Ecosystem Monitoring and Research Platforms in the Arctic—The Glider Project, Sensors, 21(20), doi: https://doi.org/10.3390/s21206752
Chen, X., G. Chen, L. Ge, B. Huang, and C. Cao (2021), Global Oceanic Eddy Identification: A Deep Learning Method From Argo Profiles and Altimetry Data, Frontiers in Marine Science, 8(412), doi: https://doi.org/10.3389/fmars.2021.646926
Cheng, L., et al. (2021), Upper Ocean Temperatures Hit Record High in 2020, Adv. Atmos. Sci., 38(4), 523-530, doi: https://doi.org/10.1007/s00376-021-0447-x
Cornec, M., H. Claustre, A. Mignot, L. Guidi, L. Lacour, A. Poteau, F. D’Ortenzio, B. Gentili, and C. Schmechtig (2021), Deep Chlorophyll Maxima in the Global Ocean: Occurrences, Drivers and Characteristics, Glob. Biogeochem. Cycle, 35(4), e2020GB006759, doi: https://doi.org/10.1029/2020GB006759
Cornec, M., R. Laxenaire, S. Speich, and H. Claustre (2021), Impact of Mesoscale Eddies on Deep Chlorophyll Maxima, Geophys. Res. Lett., 48(15), e2021GL093470, doi: https://doi.org/10.1029/2021GL093470
Denvil-Sommer, A., M. Gehlen, and M. Vrac (2021), Observation system simulation experiments in the Atlantic Ocean for enhanced surface ocean pCO2 reconstructions, Ocean Sci., 17(4), 1011-1030, doi: https://os.copernicus.org/articles/17/1011/2021/
Desbruyères, D., L. Chafik, and G. Maze (2021), A shift in the ocean circulation has warmed the subpolar North Atlantic Ocean since 2016, Communications Earth & Environment, 2(1), 48, doi: https://doi.org/10.1038/s43247-021-00120-y
Devana, M. S., W. E. Johns, A. Houk, and S. Zou (2021), Rapid Freshening of Iceland Scotland Overflow Water Driven by Entrainment of a Major Upper Ocean Salinity Anomaly, Geophys. Res. Lett., 48(22), e2021GL094396, doi: https://doi.org/10.1029/2021GL094396
Dong, B., K. Haines, and M. Martin (2021), Improved High Resolution Ocean Reanalyses Using a Simple Smoother Algorithm, Journal of Advances in Modeling Earth Systems, 13(12), e2021MS002626, doi: https://doi.org/10.1029/2021MS002626
Eden, C., D. Olbers, and T. Eriksen (2021), A Closure for Lee Wave Drag on the Large-Scale Ocean Circulation, J. Phys. Oceanogr., 51(12), 3573-3588, doi: https://doi.org/10.1175/JPO-D-20-0230.1
Fedorov, A. M., M. V. Budyansky, T. V. Belonenko, S. V. Prants, M. Y. Uleysky, and I. L. Bashmachnikov (2021), Lagrangian modeling of water circulation in the Lofoten Basin, Dynamics of Atmospheres and Oceans, 96, 101258, doi: https://doi.org/10.1016/j.dynatmoce.2021.101258
Fedorov, A. M., R. P. Raj, T. V. Belonenko, E. V. Novoselova, I. L. Bashmachnikov, J. A. Johannessen, and L. H. Pettersson (2021), Extreme Convective Events in the Lofoten Basin, Pure and Applied Geophysics, doi: https://doi.org/10.1007/s00024-021-02749-4
Ford, D. (2021), Assimilating synthetic Biogeochemical-Argo and ocean colour observations into a global ocean model to inform observing system design, Biogeosciences, 18(2), 509-534, doi: https://doi.org/10.5194/bg-18-509-2021
Gibert, F., et al. (2021), Results of the Dragon 4 Project on New Ocean Remote Sensing Data for Operational Applications, Remote Sensing, 13(14), doi: https://doi.org/10.3390/rs13142847
Gloege, L., et al. (2021), Quantifying Errors in Observationally Based Estimates of Ocean Carbon Sink Variability, Glob. Biogeochem. Cycle, 35(4), e2020GB006788, doi: https://doi.org/10.1029/2020GB006788
Grabon, J. S., J. M. Toole, A. T. Nguyen, and R. A. Krishfield (2021), An analysis of Atlantic water in the Arctic Ocean using the Arctic subpolar gyre state estimate and observations, Prog. Oceanogr., 198, 102685, doi: https://doi.org/10.1016/j.pocean.2021.102685
Guimbard, S., et al. (2021), The Salinity Pilot-Mission Exploitation Platform (Pi-MEP): A Hub for Validation and Exploitation of Satellite Sea Surface Salinity Data, Remote Sensing, 13(22), 4600, doi: https://doi.org/10.3390/rs13224600
Hakuba, M. Z., T. Frederikse, and F. W. Landerer (2021), Earth’s Energy Imbalance From the Ocean Perspective (2005–2019), Geophys. Res. Lett., 48(16), e2021GL093624, doi: https://doi.org/10.1029/2021GL093624
Hátún, H., L. Chafik, and K. M. H. Larsen (2021), The Norwegian Sea Gyre – A Regulator of Iceland-Scotland Ridge Exchanges, Frontiers in Marine Science, 8(1001), doi: https://doi.org/10.3389/fmars.2021.694614
Huang, B., C. Liu, V. Banzon, E. Freeman, G. Graham, B. Hankins, T. Smith, and H.-M. Zhang (2021), Improvements of the daily optimum interpolation sea surface temperature (DOISST) version 2.1, J. Clim., 34(8), 2923-2939, doi: https://doi.org/10.1175/JCLI-D-20-0166.1
Huang, B., C. Liu, E. Freeman, G. Graham, T. Smith, and H.-M. Zhang (2021), Assessment and Intercomparison of NOAA Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1, J. Clim., 34(18), 7421-7441, doi: https://doi.org/10.1175/JCLI-D-21-0001.1
Jemai, A., J. Wollschläger, D. Voß, and O. Zielinski (2021), Radiometry on Argo Floats: From the Multispectral State-of-the-Art on the Step to Hyperspectral Technology, Frontiers in Marine Science, 8(945), doi: https://www.frontiersin.org/article/10.3389/fmars.2021.676537
Jeon, T. (2021), Impact of Ocean Domain Definition on Sea Level Budget, Remote Sensing, 13(16), doi: https://doi.org/10.3390/rs13163206
Jeon, T., K.-W. Seo, B.-H. Kim, J.-S. Kim, J. Chen, and C. R. Wilson (2021), Sea level fingerprints and regional sea level change, Earth and Planetary Science Letters, 567, 116985, doi: https://doi.org/10.1016/j.epsl.2021.116985
Johnson, G. C., et al. (2021), Global Oceans, Bull. Amer. Meteorol. Soc., 102(8), S143-S198, doi: https://doi.org/10.1175/BAMS-D-21-0083.1
Johnson, G. C., J. Lyman, T. Boyer, L. Cheng, J. Gilson, M. Ishii, R. Killick, and S. Purkey (2021), Ocean heat content in Global Oceans in the State of the Climate in 2020, Bull. Am. Meteorol. Soc., 102(8), doi: https://doi.org/10.1175/BAMS-D-21-0083.1
Johnson, G. C., J. Reagan, J. Lyman, T. Boyer, C. Schmid, and R. Locarnini (2021), Salinity in Global Oceans in the State of the Climate in 2020, Bull. Am. Meteorol. Soc., 102(8), doi: https://doi.org/10.1175/BAMS-D-21-0083.1
Johnson, K. S., and M. B. Bif (2021), Constraint on net primary productivity of the global ocean by Argo oxygen measurements, Nat. Geosci., 14(10), 769-774, doi: https://doi.org/10.1038/s41561-021-00807-z
Kawai, Y., and S. Hosoda (2021), Global mapping of 10-day differences of temperature and salinity in the intermediate layer observed with Argo floats, J. Oceanogr., doi: https://doi.org/10.1007/s10872-021-00613-6
Kawai, Y., S. Hosoda, K. Uehara, and T. Suga (2021), Heat and salinity transport between the permanent pycnocline and the mixed layer due to the obduction process evaluated from a gridded Argo dataset, J. Oceanogr., 77(1), 75-92, doi: https://doi.org/10.1007/s10872-020-00559-1
Kenigson, J. S., and M.-L. Timmermans (2021), Nordic Seas Hydrography in the Context of Arctic and North Atlantic Ocean Dynamics, J. Phys. Oceanogr., 51(1), 101-114, doi: https://doi.org/10.1175/JPO-D-20-0071.1
Kitsios, V., P. Sandery, T. J. O’Kane, and R. Fiedler (2021), Ensemble Kalman Filter Parameter Estimation of Ocean Optical Properties for Reduced Biases in a Coupled General Circulation Model, Journal of Advances in Modeling Earth Systems, 13(2), e2020MS002252, doi: https://doi.org/10.1029/2020MS002252
Kolodziejczyk, N., M. Hamon, J. Boutin, J.-L. Vergely, G. Reverdin, A. Supply, and N. Reul (2021), Objective Analysis of SMOS and SMAP Sea Surface Salinity to Reduce Large-Scale and Time-Dependent Biases from Low to High Latitudes, J. Atmos. Ocean. Technol., 38(3), 405-421, doi: https://doi.org/10.1175/JTECH-D-20-0093.1
Le Bras, I., F. Straneo, M. Muilwijk, L. H. Smedsrud, F. Li, M. S. Lozier, and N. P. Holliday (2021), How Much Arctic Fresh Water Participates in the Subpolar Overturning Circulation?, J. Phys. Oceanogr., 51(3), 955-973, doi: https://doi.org/10.1175/JPO-D-20-0240.1
Li, N., S. Wang, L. Guan, and M. Liu (2021), Assessment of Global FY-3C/VIRR Sea Surface Temperature, Remote Sensing, 13(16), doi: https://doi.org/10.3390/rs13163249
Li, Y., W. Sun, J. Zhang, J. Meng, and Y. Zhao (2021), Reconstruction of arctic SST data and generation of multi-source satellite fusion products with high temporal and spatial resolutions, Remote Sensing Letters, 12(7), 695-703, doi: https://doi.org/10.1080/2150704X.2021.1931531
Liang, X., C. Liu, R. M. Ponte, and D. P. Chambers (2021), A Comparison of the Variability and Changes in Global Ocean Heat Content from Multiple Objective Analysis Products during the Argo Period, J. Clim., 34(19), 7875-7895, doi: https://doi.org/10.1175/JCLI-D-20-0794.1
Liu, L., J. Wen, Z. Zheng, and H. Su (2021), An improved approach for mining association rules in parallel using Spark Streaming, International Journal of Circuit Theory and Applications, 49(4), 1028-1039, doi: https://doi.org/10.1002/cta.2935
Loeb, N. G., G. C. Johnson, T. J. Thorsen, J. M. Lyman, F. G. Rose, and S. Kato (2021), Satellite and Ocean Data Reveal Marked Increase in Earth’s Heating Rate, Geophys. Res. Lett., 48(13), e2021GL093047, doi: https://doi.org/10.1029/2021GL093047
Lu, X., et al. (2021), New Ocean Subsurface Optical Properties From Space Lidars: CALIOP/CALIPSO and ATLAS/ICESat-2, Earth and Space Science, 8(10), e2021EA001839, doi: https://doi.org/10.1029/2021EA001839
Ludwigsen, C. A., and O. B. Andersen (2021), Contributions to Arctic sea level from 2003 to 2015, Advances in Space Research, 68(2), 703-710, doi: https://doi.org/10.1016/j.asr.2019.12.027
Lyu, K., X. Zhang, and J. A. Church (2021), Projected ocean warming constrained by the ocean observational record, Nature Climate Change, 11(10), 834-839, doi: https://doi.org/10.1038/s41558-021-01151-1
Meccia, V. L., D. Iovino, and A. Bellucci (2021), North Atlantic gyre circulation in PRIMAVERA models, Climate Dynamics, doi: https://doi.org/10.1007/s00382-021-05686-z
Mulet, S., et al. (2021), The new CNES-CLS18 global mean dynamic topography, Ocean Sci., 17(3), 789-808, doi: https://os.copernicus.org/articles/17/789/2021/
Nguyen, A. T., H. Pillar, V. Ocaña, A. Bigdeli, T. A. Smith, and P. Heimbach (2021), The Arctic Subpolar Gyre sTate Estimate: Description and Assessment of a Data-Constrained, Dynamically Consistent Ocean-Sea Ice Estimate for 2002–2017, Journal of Advances in Modeling Earth Systems, 13(5), e2020MS002398, doi: https://doi.org/10.1029/2020MS002398
Ni, Q., X. Zhai, X. Jiang, and D. Chen (2021), Abundant Cold Anticyclonic Eddies and Warm Cyclonic Eddies in the Global Ocean, J. Phys. Oceanogr., 51(9), 2793-2806, doi: https://doi.org/10.1175/JPO-D-21-0010.1
O’Kane, T. J., P. A. Sandery, V. Kitsios, P. Sakov, M. A. Chamberlain, D. T. Squire, M. A. Collier, C. C. Chapman, R. Fiedler, and D. Harries (2021), CAFE60v1: A 60-year large ensemble climate reanalysis. Part II: Evaluation, J. Clim., 34(13), 5171-5194, doi: https://doi.org/10.1175/JCLI-D-20-0974.1
O’Kane, T. J., P. A. Sandery, V. Kitsios, P. Sakov, M. A. Chamberlain, D. T. Squire, M. A. Collier, C. C. Chapman, R. Fiedler, and D. Harries (2021), CAFE60v1: A 60-year large ensemble climate reanalysis. Part II: Evaluation, J. Clim., 34(13), 5171-5194, doi: https://doi.org/10.1175/JCLI-D-20-0518.1
Oke, P. R., M. A. Chamberlain, R. A. S. Fiedler, H. Bastos de Oliveira, H. M. Beggs, and G. B. Brassington (2021), Combining Argo and Satellite Data Using Model-Derived Covariances: Blue Maps, Frontiers in Earth Science, 9(485), doi: https://doi.org/10.3389/feart.2021.696985
Olmedo, E., C. González-Haro, N. Hoareau, M. Umbert, V. González-Gambau, J. Martínez, C. Gabarró, and A. Turiel (2021), Nine years of SMOS sea surface salinity global maps at the Barcelona Expert Center, Earth Syst. Sci. Data, 13(2), 857-888, doi: https://doi.org/10.5194/essd-13-857-2021
Patrizio, C. R., and D. W. J. Thompson (2021), Quantifying the Role of Ocean Dynamics in Ocean Mixed Layer Temperature Variability, J. Clim., 34(7), 2567-2589, doi: https://doi.org/10.1175/JCLI-D-20-0476.1
Ponte, R. M., Q. Sun, C. Liu, and X. Liang (2021), How Salty Is the Global Ocean: Weighing It All or Tasting It a Sip at a Time?, Geophys. Res. Lett., 48(11), e2021GL092935, doi: https://doi.org/10.1029/2021GL092935
Pryamitsyn, V., B. Petrenko, A. Ignatov, and Y. Kihai (2021), Metop First Generation AVHRR FRAC SST Reanalysis Version 1, Remote Sensing, 13(20), doi: https://doi.org/10.3390/rs13204046
Rousselet, L., P. Cessi, and G. Forget (2021), Coupling of the mid-depth and abyssal components of the global overturning circulation according to a state estimate, Science Advances, 7(21), eabf5478, doi: http://dx.doi.org/10.1126/sciadv.abf5478
Sallée, J.-B., V. Pellichero, C. Akhoudas, E. Pauthenet, L. Vignes, S. Schmidtko, A. N. Garabato, P. Sutherland, and M. Kuusela (2021), Summertime increases in upper-ocean stratification and mixed-layer depth, Nature, 591(7851), 592-598, doi: https://doi.org/10.1038/s41586-021-03303-x
Schindelegger, M., A. A. Harker, R. M. Ponte, H. Dobslaw, and D. A. Salstein (2021), Convergence of Daily GRACE Solutions and Models of Submonthly Ocean Bottom Pressure Variability, Journal of Geophysical Research: Oceans, 126(2), e2020JC017031, doi: https://doi.org/10.1029/2020JC017031
Sohail, T., D. B. Irving, J. D. Zika, R. M. Holmes, and J. A. Church (2021), Fifty Year Trends in Global Ocean Heat Content Traced to Surface Heat Fluxes in the Sub-Polar Ocean, Geophys. Res. Lett., 48(8), e2020GL091439, doi: https://doi.org/10.1029/2020GL091439
Stammer, D., M. S. Martins, J. Köhler, and A. Köhl (2021), How well do we know ocean salinity and its changes?, Prog. Oceanogr., 190, 102478, doi: https://doi.org/10.1016/j.pocean.2020.102478
Su, H., T. Qin, A. Wang, and W. Lu (2021), Reconstructing Ocean Heat Content for Revisiting Global Ocean Warming from Remote Sensing Perspectives, Remote Sensing, 13(19), doi: https://doi.org/10.3390/rs13193799
Su, H., A. Wang, T. Zhang, T. Qin, X. Du, and X.-H. Yan (2021), Super-resolution of subsurface temperature field from remote sensing observations based on machine learning, International Journal of Applied Earth Observation and Geoinformation, 102, 102440, doi: https://doi.org/10.1016/j.jag.2021.102440
Su, H., T. Zhang, M. Lin, W. Lu, and X.-H. Yan (2021), Predicting subsurface thermohaline structure from remote sensing data based on long short-term memory neural networks, Remote Sens. Environ., 260, 112465, doi: https://doi.org/10.1016/j.rse.2021.112465
Thompson, P. R., et al. (2021), Sea level variability and change in Global Oceans, Bull. Am. Meteorol. Soc., 102(8), doi: https://doi.org/10.1175/BAMS-D-21-0083.1
Toyoda, T., N. Kimura, L. S. Urakawa, H. Tsujino, H. Nakano, K. Sakamoto, G. Yamanaka, K. K. Komatsu, Y. Matsumura, and Y. Kawaguchi (2021), Improved representation of Arctic sea ice velocity field in ocean–sea ice models based on satellite observations, Climate Dynamics, doi: https://doi.org/10.1007/s00382-021-05843-4
Trewin, B., A. Cazenave, S. Howell, M. Huss, K. Isensee, M. D. Palmer, O. Tarasova, and A. Vermeulen (2021), Headline Indicators for Global Climate Monitoring, Bull. Amer. Meteorol. Soc., 102(1), E20-E37, doi: https://journals.ametsoc.org/view/journals/bams/102/1/BAMS-D-19-0196.1.xml
van der Boog, C. G., H. A. Dijkstra, J. D. Pietrzak, and C. A. Katsman (2021), Double-diffusive mixing makes a small contribution to the global ocean circulation, Communications Earth & Environment, 2(1), 46, doi: https://doi.org/10.1038/s43247-021-00113-x
van der Boog, C. G., J. O. Koetsier, H. A. Dijkstra, J. D. Pietrzak, and C. A. Katsman (2021), Global dataset of thermohaline staircases obtained from Argo floats and Ice-Tethered Profilers, Earth Syst. Sci. Data, 13(1), 43-61, doi: https://doi.org/10.5194/essd-13-43-2021
Verezemskaya, P., B. Barnier, S. K. Gulev, S. Gladyshev, J.-M. Molines, V. Gladyshev, J.-M. Lellouche, and A. Gavrikov (2021), Assessing Eddying (1/12°) Ocean Reanalysis GLORYS12 Using the 14-yr Instrumental Record From 59.5°N Section in the Atlantic, Journal of Geophysical Research: Oceans, 126(6), e2020JC016317, doi: https://doi.org/10.1029/2020JC016317
Volkov, D., et al. (2021), Meridional overturning circulation and heat transport in the Atlantic Ocean in Global Oceans in the State of the Climate in 2020, Bull. Am. Meteorol. Soc., 102(8), doi: https://doi.org/10.1175/BAMS-D-21-0083.1
von Schuckmann, K., et al. (2021), Copernicus Marine Service Ocean State Report, Issue 5, J. Oper. Oceanogr., 14(sup1), 1-185, doi: https://doi.org/10.1080/1755876X.2021.1946240
Vose, R. S., B. Huang, X. Yin, D. Arndt, D. R. Easterling, J. H. Lawrimore, M. J. Menne, A. Sanchez-Lugo, and H. M. Zhang (2021), Implementing Full Spatial Coverage in NOAA’s Global Temperature Analysis, Geophys. Res. Lett., 48(4), e2020GL090873, doi: https://doi.org/10.1029/2020GL090873
Wang, F., Y. Shen, Q. Chen, and Y. Sun (2021), Reduced misclosure of global sea-level budget with updated Tongji-Grace2018 solution, Scientific Reports, 11(1), 17667, doi: https://doi.org/10.1038/s41598-021-96880-w
Wang, X., J. Zhao, T. Hattermann, L. Lin, and P. Chen (2021), Transports and Accumulations of Greenland Sea Intermediate Waters in the Norwegian Sea, Journal of Geophysical Research: Oceans, 126(4), e2020JC016582, doi: https://doi.org/10.1029/2020JC016582
Xing, X., and E. Boss (2021), Chlorophyll-Based Model to Estimate Underwater Photosynthetically Available Radiation for Modeling, In-Situ, and Remote-Sensing Applications, Geophys. Res. Lett., 48(7), e2020GL092189, doi: https://doi.org/10.1029/2020GL092189
Yajnik, K. S., and C. K. Devasana (2021), Changing variability of sea surface temperature in the post-WWII era, Journal of Earth System Science, 130(3), 144, doi: https://doi.org/10.1007/s12040-021-01637-8
Yang, C., F. E. Leonelli, S. Marullo, V. Artale, H. Beggs, B. B. Nardelli, T. M. Chin, V. De Toma, S. Good, and B. Huang (2021), Sea Surface Temperature Intercomparison in the Framework of the Copernicus Climate Change Service (C3S), J. Clim., 34(13), 5257-5283, doi: https://doi.org/10.1175/JCLI-D-20-0793.1
Yuan, M., Z. Song, Z. Li, Z. Jing, P. Chang, B. Sun, H. Wang, X. Liu, S. Zhou, and L. Wu (2021), An Improved Parameterization of Wind-Driven Turbulent Vertical Mixing Based on an Eddy-Resolving Climate Model, Journal of Advances in Modeling Earth Systems, 13(10), e2021MS002630, doi: https://doi.org/10.1029/2021MS002630
Zhang, B., F. Li, G. Zheng, Y. Wang, Z. Tan, and X. Li (2021), Developing big ocean system in support of Sustainable Development Goals: challenges and countermeasures, Big Earth Data, 5(4), 557-575, doi: https://doi.org/10.1080/20964471.2021.1965371
Zhang, H., and A. Ignatov (2021), A Completeness and Complementarity Analysis of the Data Sources in the NOAA In Situ Sea Surface Temperature Quality Monitor (iQuam) System, Remote Sensing, 13(18), doi: https://doi.org/10.3390/rs13183741
Zhang, H., A. Ignatov, and D. Hinshaw (2021), Evaluation of the In Situ Sea Surface Temperature Quality Control in the NOAA In Situ SST Quality Monitor (i Quam) System, J. Atmos. Ocean. Technol., 38(7), 1249-1263, doi: https://doi.org/10.1175/JTECH-D-20-0203.1
Zhang, R., and M. Thomas (2021), Horizontal circulation across density surfaces contributes substantially to the long-term mean northern Atlantic Meridional Overturning Circulation, Communications Earth & Environment, 2(1), 112, doi: https://doi.org/10.1038/s43247-021-00182-y
Zhao, D., Y. Xu, X. Zhang, and C. Huang (2021), Global chlorophyll distribution induced by mesoscale eddies, Remote Sens. Environ., 254, 112245, doi: https://doi.org/10.1016/j.rse.2020.112245
Zhou, W., J. Li, F. Xu, Y. Shu, and Y. Feng (2021), The impact of ocean data assimilation on seasonal predictions based on the National Climate Center climate system model, Acta Oceanol. Sin., 40(5), 58-70, doi: https://doi.org/10.1007/s13131-021-1732-3
Zika, J. D., J. M. Gregory, E. L. McDonagh, A. Marzocchi, and L. Clement (2021), Recent water mass changes reveal mechanisms of ocean warming, J. Clim., 34(9), 3461-3479, doi: https://doi.org/10.1175/JCLI-D-20-0355.1
2020
Amin, H., M. Bagherbandi, and L. E. Sjöberg, 2020: Quantifying barystatic sea-level change from satellite altimetry, GRACE and Argo observations over 2005–2016. Advances in Space Research, 65, 1922-1940, https://doi.org/10.1016/j.asr.2020.01.029
Barpanda, P. and T. A. Shaw, 2020: Surface Fluxes Modulate the Seasonality of Zonal-Mean Storm Tracks. Journal of the Atmospheric Sciences, 77, 753-779, https://doi.org/10.1175/JAS-D-19-0139.1
Barton, B. I., C. Lique, and Y.-D. Lenn, 2020: Water Mass Properties Derived From Satellite Observations in the Barents Sea. Journal of Geophysical Research: Oceans, 125, e2019JC015449, https://doi.org/10.1029/2019JC015449
Broomé, S., L. Chafik, and J. Nilsson, 2020: Mechanisms of decadal changes in sea surface height and heat content in the eastern Nordic Seas. Ocean Sci., 16, 715-728, https://doi.org/10.5194/os-16-715-2020
Bruvik, E. M., I. Fer, K. Våge, and P. M. Haugan, 2020: A revised ocean glider concept to realize Stommel’s vision and supplement Argo floats. Ocean Sci., 16, 291-305, https://doi.org/10.5194/os-16-291-2020
Calvert, D., G. Nurser, M. J. Bell, and B. Fox-Kemper, 2020: The impact of a parameterisation of submesoscale mixed layer eddies on mixed layer depths in the NEMO ocean model. Ocean Modelling, 154, 101678, https://doi.org/10.1016/j.ocemod.2020.101678
Chai, F., K. S. Johnson, H. Claustre, X. Xing, Y. Wang, E. Boss, S. Riser, K. Fennel, O. Schofield, and A. Sutton, 2020: Monitoring ocean biogeochemistry with autonomous platforms. Nature Reviews Earth & Environment, 1, 315-326, https://doi.org/10.1038/s43017-020-0053-y
Cheng, L., J. Abraham, J. Zhu, K. E. Trenberth, J. Fasullo, T. Boyer, R. Locarnini, B. Zhang, F. Yu, L. Wan, X. Chen, X. Song, Y. Liu, and M. E. Mann, 2020: Record-Setting Ocean Warmth Continued in 2019. Advances in Atmospheric Sciences, 37, 137-142, https://doi.org/10.1007/s00376-020-9283-7
Claustre, H., K. S. Johnson, and Y. Takeshita, 2020: Observing the Global Ocean with Biogeochemical-Argo. Annual Review of Marine Science, 12, 23-48, https://doi.org/10.1146/annurev-marine-010419-010956
Clément, L., E. L. McDonagh, A. Marzocchi, and A. J. G. Nurser, 2020: Signature of Ocean Warming at the Mixed Layer Base. Geophysical Research Letters, 47, e2019GL086269, https://doi.org/10.1029/2019GL086269
de Lavergne, C., C. Vic, G. Madec, F. Roquet, A. F. Waterhouse, C. B. Whalen, Y. Cuypers, P. Bouruet-Aubertot, B. Ferron, and T. Hibiya, 2020: A Parameterization of Local and Remote Tidal Mixing. Journal of Advances in Modeling Earth Systems, 12, e2020MS002065, https://doi.org/10.1029/2020MS002065
de Marez, C., X. Carton, P. L’Hégaret, T. Meunier, A. Stegner, B. Le Vu, and M. Morvan, 2020: Oceanic vortex mergers are not isolated but influenced by the β-effect and surrounding eddies. Scientific Reports, 10, 2897, https://doi.org/10.1038/s41598-020-59800-y
Eden, C., F. Pollmann, and D. Olbers, 2020: Towards a Global Spectral Energy Budget for Internal Gravity Waves in the Ocean. Journal of Physical Oceanography, 50, 935-944, https://doi.org/10.1175/JPO-D-19-0022.1
Estella-Perez, V., J. Mignot, E. Guilyardi, D. Swingedouw, and G. Reverdin, 2020: Advances in reconstructing the AMOC using sea surface observations of salinity. Climate Dynamics, 55, 975-992, https://doi.org/10.1007/s00382-020-05304-4
Fedorov, A. M. and I. L. Bashmachnikov, 2020: Accuracy of the deep convection intensity from a limited number of casts. Dynamics of Atmospheres and Oceans, 92, 101164, https://doi.org/10.1016/j.dynatmoce.2020.101164
Fer, I., A. Bosse, and J. Dugstad, 2020: Norwegian Atlantic Slope Current along the Lofoten Escarpment. Ocean Sci., 16, 685-701, https://doi.org/10.5194/os-16-685-2020
Fournier, S., T. Lee, X. Wang, T. W. K. Armitage, O. Wang, I. Fukumori, and R. Kwok, 2020: Sea Surface Salinity as a Proxy for Arctic Ocean Freshwater Changes. Journal of Geophysical Research: Oceans, 125, e2020JC016110, https://doi.org/10.1029/2020JC016110
Frederikse, T., F. Landerer, L. Caron, S. Adhikari, D. Parkes, V. W. Humphrey, S. Dangendorf, P. Hogarth, L. Zanna, L. Cheng, and Y.-H. Wu, 2020: The causes of sea-level rise since 1900. Nature, 584, 393-397, https://doi.org/10.1038/s41586-020-2591-3
Gasparin, F., M. Hamon, E. Rémy, and P.-Y. L. Traon, 2020: How Deep Argo Will Improve the Deep Ocean in an Ocean Reanalysis. Journal of Climate, 33, 77-94, https://doi.org/10.1175/JCLI-D-19-0208.1
Gou, Y., T. Zhang, J. Liu, L. Wei, and J. Cui, 2020: DeepOcean: A General Deep Learning Framework for Spatio-Temporal Ocean Sensing Data Prediction. IEEE Access, 8, 79192-79202, https://doi.org/10.1109/ACCESS.2020.2990939
Gourrion, J., T. Szekely, R. Killick, B. Owens, G. Reverdin, and B. Chapron, 2020: Improved Statistical Method for Quality Control of Hydrographic Observations. Journal of Atmospheric and Oceanic Technology, 37, 789-806, https://doi.org/10.1175/JTECH-D-18-0244.1
Hermans, T. H. J., J. Tinker, M. D. Palmer, C. A. Katsman, B. L. A. Vermeersen, and A. B. A. Slangen, 2020: Improving sea-level projections on the Northwestern European shelf using dynamical downscaling. Climate Dynamics, 54, 1987-2011, https://doi.org/10.1007/s00382-019-05104-5
Holliday, N. P., M. Bersch, B. Berx, L. Chafik, S. Cunningham, C. Florindo-López, H. Hátún, W. Johns, S. A. Josey, K. M. H. Larsen, S. Mulet, M. Oltmanns, G. Reverdin, T. Rossby, V. Thierry, H. Valdimarsson, and I. Yashayaev, 2020: Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic. Nature Communications, 11, 585, https://doi.org/10.1038/s41467-020-14474-y
Hu, S., J. Sprintall, C. Guan, M. J. McPhaden, F. Wang, D. Hu, and W. Cai, 2020: Deep-reaching acceleration of global mean ocean circulation over the past two decades. Science Advances, 6, eaax7727, http://dx.doi.org/10.1126/sciadv.aax7727
Huang, B., M. J. Menne, T. Boyer, E. Freeman, B. E. Gleason, J. H. Lawrimore, C. Liu, J. J. Rennie, C. J. Schreck, F. Sun, R. Vose, C. N. Williams, X. Yin, and H.-M. Zhang, 2020: Uncertainty Estimates for Sea Surface Temperature and Land Surface Air Temperature in NOAAGlobalTemp Version 5. Journal of Climate, 33, 1351-1379, https://doi.org/10.1175/JCLI-D-19-0395.1
Huang, C., M. Wu, X. Huang, J. Cao, J. He, C. Chen, G. Zhai, K. Deng, and X. Lu, 2020: Reconstruction and evaluation of the full-depth sound speed profile with world ocean atlas 2018 for the hydrographic surveying in the deep sea waters. Applied Ocean Research, 101, 102201, https://doi.org/10.1016/j.apor.2020.102201
Johnson, G. C. and J. M. Lyman, 2020: Sea surface salinity in the State of the Climate in 2019. Bull. Am. Meteorol. Soc., 101, https://doi.org/10.1175/2020BAMSStateoftheClimate.1
Johnson, G. C. and J. M. Lyman, 2020: Warming trends increasingly dominate global ocean. Nature Climate Change, 10, 757-761, https://doi.org/10.1038/s41558-020-0822-0
Johnson, G. C., J. M. Lyman, T. Boyer, L. Cheng, C. M. Domingues, J. Gilson, M. Ishii, R. E. Killick, D. Monselesan, S. G. Purkey, and S. E. Wijffels, 2020: Ocean Heat Content in the State of the Climate in 2019. Bull. Am. Meteorol. Soc., 101, https://doi.org/10.1175/2020BAMSStateoftheClimate.1
Johnson, K. S., M. B. Bif, S. Bushinsky, A. J. Fassbender, and Y. Takeshita, 2020: BioGeoChemical Argo in the State of the Climate in 2019. Bull. Am. Meteorol. Soc., 101, https://doi.org/10.1175/2020BAMSStateoftheClimate.1
Kawai, Y., S. Hosoda, K. Uehara, and T. Suga, 2020: Heat and salinity transport between the permanent pycnocline and the mixed layer due to the obduction process evaluated from a gridded Argo dataset. Journal of Oceanography, https://doi.org/10.1007/s10872-020-00559-1
Kiss, A. E., A. M. Hogg, N. Hannah, F. Boeira Dias, G. B. Brassington, M. A. Chamberlain, C. Chapman, P. Dobrohotoff, C. M. Domingues, E. R. Duran, M. H. England, R. Fiedler, S. M. Griffies, A. Heerdegen, P. Heil, R. M. Holmes, A. Klocker, S. J. Marsland, A. K. Morrison, J. Munroe, M. Nikurashin, P. R. Oke, G. S. Pilo, O. Richet, A. Savita, P. Spence, K. D. Stewart, M. L. Ward, F. Wu, and X. Zhang, 2020: ACCESS-OM2 v1.0: a global ocean–sea ice model at three resolutions. Geosci. Model Dev., 13, 401-442, https://doi.org/10.5194/gmd-13-401-2020
Kolås, E. H., Z. Koenig, I. Fer, F. Nilsen, and M. Marnela, 2020: Structure and Transport of Atlantic Water North of Svalbard From Observations in Summer and Fall 2018. Journal of Geophysical Research: Oceans, 125, e2020JC016174, https://doi.org/10.1029/2020JC016174
Kovalevsky, D. V., I. L. Bashmachnikov, and G. V. Alekseev, 2020: Formation and decay of a deep convective chimney. Ocean Modelling, 148, 101583, https://doi.org/10.1016/j.ocemod.2020.101583
Li, Y., H. Liu, M. Ding, P. Lin, Z. Yu, Y. Yu, Y. Meng, Y. Li, X. Jian, J. Jiang, K. Chen, Q. Yang, Y. Wang, B. Zhao, J. Wei, J. Ma, W. Zheng, and P. Wang, 2020: Eddy-resolving Simulation of CAS-LICOM3 for Phase 2 of the Ocean Model Intercomparison Project. Advances in Atmospheric Sciences, 37, 1067-1080, https://doi.org/10.1007/s00376-020-0057-z
Ding, Z. Sun, Y. Wang, Y. Meng, W. Zheng, and J. Ma, 2020: LICOM Model Datasets for the CMIP6 Ocean Model Intercomparison Project. Advances in Atmospheric Sciences, 37, 239-249, https://doi.org/10.1007/s00376-019-9208-5
Liu, C., X. Liang, D. P. Chambers, and R. M. Ponte, 2020: Global Patterns of Spatial and Temporal Variability in Salinity from Multiple Gridded Argo Products. Journal of Climate, 33, 8751-8766, https://doi.org/10.1175/JCLI-D-20-0053.1
Liu, D. a., J. Sun, and C. Guan, 2020: Inversion of Evaporation and Water Vapor Transport Using HY-2 Multi-Sensor Data. Journal of Ocean University of China, 19, 13-22, https://doi.org/10.1007/s11802-020-4197-7
Liu, Y., J. Attema, and W. Hazeleger, 2020: Atmosphere–Ocean Interactions and Their Footprint on Heat Transport Variability in the Northern Hemisphere. Journal of Climate, 33, 3691-3710, https://doi.org/10.1175/JCLI-D-19-0570.1
Liu, Z., G. Liao, X. Hu, and B. Zhou, 2020: Aspect Ratio of Eddies Inferred From Argo Floats and Satellite Altimeter Data in the Ocean. Journal of Geophysical Research: Oceans, 125, e2019JC015555, https://doi.org/10.1029/2019JC015555
March, D., L. Boehme, J. Tintoré, P. J. Vélez-Belchi, and B. J. Godley, 2020: Towards the integration of animal-borne instruments into global ocean observing systems. Global Change Biology, 26, 586-596, https://doi.org/10.1111/gcb.14902
Mayot, N., P. A. Matrai, A. Arjona, S. Bélanger, C. Marchese, T. Jaegler, M. Ardyna, and M. Steele, 2020: Springtime Export of Arctic Sea Ice Influences Phytoplankton Production in the Greenland Sea. Journal of Geophysical Research: Oceans, 125, e2019JC015799, https://doi.org/10.1029/2019JC015799
Molod, A., E. Hackert, Y. Vikhliaev, B. Zhao, D. Barahona, G. Vernieres, A. Borovikov, R. M. Kovach, J. Marshak, S. Schubert, Z. Li, Y.-K. Lim, L. C. Andrews, R. Cullather, R. Koster, D. Achuthavarier, J. Carton, L. Coy, J. L. M. Friere, K. M. Longo, K. Nakada, and S. Pawson, 2020: GEOS-S2S Version 2: The GMAO High-Resolution Coupled Model and Assimilation System for Seasonal Prediction. Journal of Geophysical Research: Atmospheres, 125, e2019JD031767, https://doi.org/10.1029/2019JD031767
Nguyen, A. T., P. Heimbach, V. V. Garg, V. Ocaña, C. Lee, and L. Rainville, 2020: Impact of Synthetic Arctic Argo-Type Floats in a Coupled Ocean–Sea Ice State Estimation Framework. Journal of Atmospheric and Oceanic Technology, 37, 1477-1495, https://doi.org/10.1175/JTECH-D-19-0159.1
Olbers, D., F. Pollmann, and C. Eden, 2020: On PSI Interactions in Internal Gravity Wave Fields and the Decay of Baroclinic Tides. Journal of Physical Oceanography, 50, 751-771, https://doi.org/10.1175/JPO-D-19-0224.1
Oltmanns, M., J. Karstensen, G. W. K. Moore, and S. A. Josey, 2020: Rapid Cooling and Increased Storminess Triggered by Freshwater in the North Atlantic. Geophysical Research Letters, 47, e2020GL087207, https://doi.org/10.1029/2020GL087207
Pollmann, F., 2020: Global Characterization of the Ocean’s Internal Wave Spectrum. Journal of Physical Oceanography, 50, 1871-1891, https://doi.org/10.1175/JPO-D-19-0185.1
Portela, E., N. Kolodziejczyk, C. Vic, and V. Thierry, 2020: Physical Mechanisms Driving Oxygen Subduction in the Global Ocean. Geophysical Research Letters, 47, e2020GL089040, https://doi.org/10.1029/2020GL089040
Raj, R. P., O. B. Andersen, J. A. Johannessen, B. D. Gutknecht, S. Chatterjee, S. K. Rose, A. Bonaduce, M. Horwath, H. Ranndal, K. Richter, H. Palanisamy, C. A. Ludwigsen, L. Bertino, J. E. Ø. Nilsen, P. Knudsen, A. Hogg, A. Cazenave, and J. Benveniste, 2020: Arctic Sea Level Budget Assessment during the GRACE/Argo Time Period. Remote Sensing, 12, 2837, https://doi.org/10.3390/rs12172837
Raj, R. P., I. Halo, S. Chatterjee, T. Belonenko, M. Bakhoday-Paskyabi, I. Bashmachnikov, A. Fedorov, and J. Xie, 2020: Interaction Between Mesoscale Eddies and the Gyre Circulation in the Lofoten Basin. Journal of Geophysical Research: Oceans, 125, e2020JC016102, https://doi.org/10.1029/2020JC016102
Rathore, S., N. L. Bindoff, H. E. Phillips, and M. Feng, 2020: Recent hemispheric asymmetry in global ocean warming induced by climate change and internal variability. Nature Communications, 11, 2008, https://doi.org/10.1038/s41467-020-15754-3
Reul, N., S. A. Grodsky, M. Arias, J. Boutin, R. Catany, B. Chapron, F. D’Amico, E. Dinnat, C. Donlon, A. Fore, S. Fournier, S. Guimbard, A. Hasson, N. Kolodziejczyk, G. Lagerloef, T. Lee, D. M. Le Vine, E. Lindstrom, C. Maes, S. Mecklenburg, T. Meissner, E. Olmedo, R. Sabia, J. Tenerelli, C. Thouvenin-Masson, A. Turiel, J. L. Vergely, N. Vinogradova, F. Wentz, and S. Yueh, 2020: Sea surface salinity estimates from spaceborne L-band radiometers: An overview of the first decade of observation (2010–2019). Remote Sensing of Environment, 242, 111769, https://doi.org/10.1016/j.rse.2020.111769
Ridge, S. M. and G. A. McKinley, 2020: Advective Controls on the North Atlantic Anthropogenic Carbon Sink. Global Biogeochemical Cycles, 34, e2019GB006457, https://doi.org/10.1029/2019GB006457
Roberts, M. J., L. C. Jackson, C. D. Roberts, V. Meccia, D. Docquier, T. Koenigk, P. Ortega, E. Moreno-Chamarro, A. Bellucci, A. Coward, S. Drijfhout, E. Exarchou, O. Gutjahr, H. Hewitt, D. Iovino, K. Lohmann, D. Putrasahan, R. Schiemann, J. Seddon, L. Terray, X. Xu, Q. Zhang, P. Chang, S. G. Yeager, F. S. Castruccio, S. Zhang, and L. Wu, 2020: Sensitivity of the Atlantic Meridional Overturning Circulation to Model Resolution in CMIP6 HighResMIP Simulations and Implications for Future Changes. Journal of Advances in Modeling Earth Systems, 12, e2019MS002014, https://doi.org/10.1029/2019MS002014
Robson, J., Y. Aksenov, T. J. Bracegirdle, O. Dimdore-Miles, P. T. Griffiths, D. P. Grosvenor, D. L. R. Hodson, J. Keeble, C. MacIntosh, A. Megann, S. Osprey, A. C. Povey, D. Schröder, M. Yang, A. T. Archibald, K. S. Carslaw, L. Gray, C. Jones, B. Kerridge, D. Knappett, T. Kuhlbrodt, M. Russo, A. Sellar, R. Siddans, B. Sinha, R. Sutton, J. Walton, and L. J. Wilcox, 2020: The Evaluation of the North Atlantic Climate System in UKESM1 Historical Simulations for CMIP6. Journal of Advances in Modeling Earth Systems, 12, e2020MS002126, https://doi.org/10.1029/2020MS002126
Rousselet, L., P. Cessi, and G. Forget, 2020: Routes of the Upper Branch of the Atlantic Meridional Overturning Circulation according to an Ocean State Estimate. Geophysical Research Letters, 47, e2020GL089137, https://doi.org/10.1029/2020GL089137
Royston, S., B. Dutt Vishwakarma, R. Westaway, J. Rougier, Z. Sha, and J. Bamber, 2020: Can We Resolve the Basin-Scale Sea Level Trend Budget From GRACE Ocean Mass? Journal of Geophysical Research: Oceans, 125, e2019JC015535, https://doi.org/10.1029/2019JC015535
Séférian, R., S. Berthet, A. Yool, J. Palmiéri, L. Bopp, A. Tagliabue, L. Kwiatkowski, O. Aumont, J. Christian, J. Dunne, M. Gehlen, T. Ilyina, J. G. John, H. Li, M. C. Long, J. Y. Luo, H. Nakano, A. Romanou, J. Schwinger, C. Stock, Y. Santana-Falcón, Y. Takano, J. Tjiputra, H. Tsujino, M. Watanabe, T. Wu, F. Wu, and A. Yamamoto, 2020: Tracking Improvement in Simulated Marine Biogeochemistry Between CMIP5 and CMIP6. Current Climate Change Reports, 6, 95-119, https://doi.org/10.1007/s40641-020-00160-0
Shulman, I., M. A. Moline, J. H. Cohen, S. Anderson, E. J. Metzger, and C. Rowley, 2020: Bioluminescence potential modeling during polar night in the Arctic: impact of advection versus local sources. Ocean Dynamics, 70, 1211-1223, https://doi.org/10.1007/s10236-020-01392-2
Skliris, N., R. Marsh, J. V. Mecking, and J. D. Zika, 2020: Changing water cycle and freshwater transports in the Atlantic Ocean in observations and CMIP5 models. Climate Dynamics, 54, 4971-4989, https://doi.org/10.1007/s00382-020-05261-y
Sulpis, O., S. K. Lauvset, and M. Hagens, 2020: Current estimates of K1* and K2* appear inconsistent with measured CO2 system parameters in cold oceanic regions. Ocean Sci., 16, 847-862, https://doi.org/10.5194/os-16-847-2020
Supply, A., J. Boutin, J.-L. Vergely, N. Kolodziejczyk, G. Reverdin, N. Reul, and A. Tarasenko, 2020: New insights into SMOS sea surface salinity retrievals in the Arctic Ocean. Remote Sensing of Environment, 249, 112027, https://doi.org/10.1016/j.rse.2020.112027
Tanajura, C. A. S., D. Mignac, A. N. de Santana, F. B. Costa, L. N. Lima, K. P. Belyaev, and J. Zhu, 2020: Observing system experiments over the Atlantic Ocean with the REMO ocean data assimilation system (RODAS) into HYCOM. Ocean Dynamics, 70, 115-138, https://doi.org/10.1007/s10236-019-01309-8
Tang, L., J. Li, J. Chen, S.-Y. Wang, R. Wang, and X. Hu, 2020: Seismic Impact of Large Earthquakes on Estimating Global Mean Ocean Mass Change from GRACE. Remote Sensing, 12, https://doi.org/10.3390/rs12060935
Thompson, P. R., M. J. Widlansky, E. Leuliette, W. Sweet, D. P. Chambers, B. D. Hamlington, S. Jevrejeva, J. J. Marra, M. A. Merrifield, G. T. Mitchum, and R. S. nerem, 2020: Sea level variability and change in the State of the Climate in 2019. Bull. Am. Meteorol. Soc., 101, https://doi.org/10.1175/2020BAMSStateoftheClimate.1
Tucker, T., D. Giglio, M. Scanderbeg, and S. S. P. Shen, 2020: Argovis: A Web Application for Fast Delivery, Visualization, and Analysis of Argo Data. Journal of Atmospheric and Oceanic Technology, 37, 401-416, https://doi.org/10.1175/JTECH-D-19-0041.1
Vishwakarma, B. D., S. Royston, R. E. M. Riva, R. M. Westaway, and J. L. Bamber, 2020: Sea Level Budgets Should Account for Ocean Bottom Deformation. Geophysical Research Letters, 47, e2019GL086492, https://doi.org/10.1029/2019GL086492
Volkov, D. L., C. S. Meinen, C. Schmid, B. Moat, M. Lankhorst, S. Dong, F. Li, W. Johns, S. Lozier, R. Perez, G. Goni, M. Kersalé, E. Frajka-Williams, M. Baringer, D. Smeed, D. Rayner, A. Sanchez-Franks, and U. Send, 2020: Atlantic meridional overturning circulation and associated heat transport in the State of the Climate in 2019. Bull. Am. Meteorol. Soc., 101, https://doi.org/10.1175/2020BAMSStateoftheClimate.1
Wang, G. and F. Qiao, 2020: Mirror patterns of physical variables in the ocean. Climate Dynamics, 54, 3109-3120, https://doi.org/10.1007/s00382-020-05161-1
Wild, M., 2020: The global energy balance as represented in CMIP6 climate models. Climate Dynamics, 55, 553-577, https://doi.org/10.1007/s00382-020-05282-7
Wong, A. P. S., S. E. Wijffels, S. C. Riser, S. Pouliquen, S. Hosoda, D. Roemmich, J. Gilson, G. C. Johnson, K. Martini, D. J. Murphy, M. Scanderbeg, T. V. S. U. Bhaskar, J. J. H. Buck, F. Merceur, T. Carval, G. Maze, C. Cabanes, X. André, N. Poffa, I. Yashayaev, P. M. Barker, S. Guinehut, M. Belbéoch, M. Ignaszewski, M. O. N. Baringer, C. Schmid, J. M. Lyman, K. E. McTaggart, S. G. Purkey, N. Zilberman, M. B. Alkire, D. Swift, W. B. Owens, S. R. Jayne, C. Hersh, P. Robbins, D. West-Mack, F. Bahr, S. Yoshida, P. J. H. Sutton, R. Cancouët, C. Coatanoan, D. Dobbler, A. G. Juan, J. Gourrion, N. Kolodziejczyk, V. Bernard, B. Bourlès, H. Claustre, F. D’Ortenzio, S. Le Reste, P.-Y. Le Traon, J.-P. Rannou, C. Saout-Grit, S. Speich, V. Thierry, N. Verbrugge, I. M. Angel-Benavides, B. Klein, G. Notarstefano, P.-M. Poulain, P. Vélez-Belchí, T. Suga, K. Ando, N. Iwasaska, T. Kobayashi, S. Masuda, E. Oka, K. Sato, T. Nakamura, K. Sato, Y. Takatsuki, T. Yoshida, R. Cowley, J. L. Lovell, P. R. Oke, E. M. van Wijk, F. Carse, M. Donnelly, W. J. Gould, K. Gowers, B. A. King, S. G. Loch, M. Mowat, J. Turton, E. P. Rama Rao, M. Ravichandran, H. J. Freeland, I. Gaboury, D. Gilbert, B. J. W. Greenan, M. Ouellet, T. Ross, A. Tran, M. Dong, Z. Liu, J. Xu, K. Kang, H. Jo, S.-D. Kim, and H.-M. Park, 2020: Argo Data 1999–2019: Two Million Temperature-Salinity Profiles and Subsurface Velocity Observations From a Global Array of Profiling Floats. Frontiers in Marine Science, 7, https://doi.org/10.3389/fmars.2020.00700
Xing, X., E. Boss, J. Zhang, and F. Chai, 2020: Evaluation of Ocean Color Remote Sensing Algorithms for Diffuse Attenuation Coefficients and Optical Depths with Data Collected on BGC-Argo Floats. Remote Sensing, 12, 2367, https://doi.org/10.3390/rs12152367
Ypma, S. L., S. Georgiou, J. S. Dugstad, J. D. Pietrzak, and C. A. Katsman, 2020: Pathways and Water Mass Transformation Along and Across the Mohn-Knipovich Ridge in the Nordic Seas. Journal of Geophysical Research: Oceans, 125, e2020JC016075, https://doi.org/10.1029/2020JC016075
2019
Ali, A., K. H. Christensen, Ø. Breivik, M. Malila, R. P. Raj, L. Bertino, E. P. Chassignet, and M. Bakhoday-Paskyabi, 2019: A comparison of Langmuir turbulence parameterizations and key wave effects in a numerical model of the North Atlantic and Arctic Oceans. Ocean Modelling, 137, 76-97, https://doi.org/10.1016/j.ocemod.2019.02.005
Androsov, A., L. Nerger, R. Schnur, J. Schröter, A. Albertella, R. Rummel, R. Savcenko, W. Bosch, S. Skachko, and S. Danilov, 2019: On the assimilation of absolute geodetic dynamic topography in a global ocean model: impact on the deep ocean state. Journal of Geodesy, 93, 141-157, https://doi.org/10.1007/s00190-018-1151-1
Asbjørnsen, H., M. Årthun, Ø. Skagseth, and T. Eldevik, 2019: Mechanisms of Ocean Heat Anomalies in the Norwegian Sea. Journal of Geophysical Research: Oceans, 124, 2908-2923, https://doi.org/10.1029/2018JC014649
Bao, S., H. Wang, R. Zhang, H. Yan, and J. Chen, 2019: Comparison of Satellite-Derived Sea Surface Salinity Products from SMOS, Aquarius, and SMAP. Journal of Geophysical Research: Oceans, 124, 1932-1944, https://doi.org/10.1029/2019JC014937
Bellacicco, M., M. Cornec, E. Organelli, R. J. W. Brewin, G. Neukermans, G. Volpe, M. Barbieux, A. Poteau, C. Schmechtig, F. D'Ortenzio, S. Marullo, H. Claustre, and J. Pitarch, 2019: Global Variability of Optical Backscattering by Non-algal particles From a Biogeochemical-Argo Data Set. Geophysical Research Letters, 46, 9767-9776, https://doi.org/10.1029/2019GL084078
Bilbao, R. A. F., J. M. Gregory, N. Bouttes, M. D. Palmer, and P. Stott, 2019: Attribution of ocean temperature change to anthropogenic and natural forcings using the temporal, vertical and geographical structure. Climate Dynamics, 53, 5389-5413, https://doi.org/10.1007/s00382-019-04910-1
Bittig, H. C., T. L. Maurer, J. N. Plant, C. Schmechtig, A. P. S. Wong, H. Claustre, T. W. Trull, T. V. S. Udaya Bhaskar, E. Boss, G. Dall’Olmo, E. Organelli, A. Poteau, K. S. Johnson, C. Hanstein, E. Leymarie, S. Le Reste, S. C. Riser, A. R. Rupan, V. Taillandier, V. Thierry, and X. Xing, 2019: A BGC-Argo Guide: Planning, Deployment, Data Handling and Usage. Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00502
Borovikov, A., R. Cullather, R. Kovach, J. Marshak, G. Vernieres, Y. Vikhliaev, B. Zhao, and Z. Li, 2019: GEOS-5 seasonal forecast system. Climate Dynamics, 53, 7335-7361, https://doi.org/10.1007/s00382-017-3835-2
Boyd, P. W., H. Claustre, M. Levy, D. A. Siegel, and T. Weber, 2019: Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature, 568, 327-335, https://doi.org/10.1038/s41586-019-1098-2
Brakstad, A., K. Våge, L. Håvik, and G. W. K. Moore, 2019: Water Mass Transformation in the Greenland Sea during the Period 1986–2016. Journal of Physical Oceanography, 49, 121-140, https://doi.org/10.1175/JPO-D-17-0273.1
Buckley, M. W., T. DelSole, M. S. Lozier, and L. Li, 2019: Predictability of North Atlantic Sea Surface Temperature and Upper-Ocean Heat Content. Journal of Climate, 32, 3005-3023, https://doi.org/10.1175/JCLI-D-18-0509.1
Bushuk, M., X. Yang, M. Winton, R. Msadek, M. Harrison, A. Rosati, and R. Gudgel, 2019: The Value of Sustained Ocean Observations for Sea Ice Predictions in the Barents Sea. Journal of Climate, 32, 7017-7035, https://doi.org/10.1175/JCLI-D-19-0179.1
Carton, J. A., S. G. Penny, and E. Kalnay, 2019: Temperature and Salinity Variability in the SODA3, ECCO4r3, and ORAS5 Ocean Reanalyses, 1993–2015. Journal of Climate, 32, 2277-2293, https://doi.org/10.1175/JCLI-D-18-0605.1
Cazenave, A., B. Hamlington, M. Horwath, V. R. Barletta, J. Benveniste, D. Chambers, P. Döll, A. E. Hogg, J. F. Legeais, M. Merrifield, B. Meyssignac, G. Mitchum, S. Nerem, R. Pail, H. Palanisamy, F. Paul, K. von Schuckmann, and P. Thompson, 2019: Observational Requirements for Long-Term Monitoring of the Global Mean Sea Level and Its Components Over the Altimetry Era. Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00582
Chafik, L. and T. Rossby, 2019: Volume, Heat, and Freshwater Divergences in the Subpolar North Atlantic Suggest the Nordic Seas as Key to the State of the Meridional Overturning Circulation. Geophysical Research Letters, 46, 4799-4808, https://doi.org/10.1029/2019GL082110
Chang, L., H. Tang, Q. Wang, and W. Sun, 2019: Global thermosteric sea level change contributed by the deep ocean below 2000 m estimated by Argo and CTD data. Earth and Planetary Science Letters, 524, 115727, https://doi.org/10.1016/j.epsl.2019.115727
Chen, G. and D. Geng, 2019: A “mirror layer” of temperature and salinity in the ocean. Climate Dynamics, 52, 1-13, https://doi.org/10.1007/s00382-018-4495-6
Cheng, L., J. Abraham, Z. Hausfather, and K. E. Trenberth, 2019: How fast are the oceans warming? Science, 363, 128-129, http://dx.doi.org/10.1126/science.aav7619
Cheng, L., J. Zhu, J. Abraham, K. E. Trenberth, J. T. Fasullo, B. Zhang, F. Yu, L. Wan, X. Chen, and X. Song, 2019: 2018 Continues Record Global Ocean Warming. Advances in Atmospheric Sciences, 36, 249-252, https://doi.org/10.1007/s00376-019-8276-x
Cobb, A. and A. Czaja, 2019: Mesoscale Signature of the North Atlantic Oscillation and Its Interaction With the Ocean. Geophysical Research Letters, 46, 5575-5581, https://doi.org/10.1029/2018GL080744
Conchubhair, D. Ó., D. Fitzhenry, A. Lusher, A. L. King, T. van Emmerik, L. Lebreton, C. Ricaurte-Villota, L. Espinosa, and E. O’Rourke, 2019: Joint effort among research infrastructures to quantify the impact of plastic debris in the ocean. Environmental Research Letters, 14, 065001, http://dx.doi.org/10.1088/1748-9326/ab17ed
Dagestad, K.-F. and J. Röhrs, 2019: Prediction of ocean surface trajectories using satellite derived vs. modeled ocean currents. Remote Sensing of Environment, 223, 130-142, https://doi.org/10.1016/j.rse.2019.01.001
Dinnat, E. P., D. M. Le Vine, J. Boutin, T. Meissner, and G. Lagerloef, 2019: Remote Sensing of Sea Surface Salinity: Comparison of Satellite and In Situ Observations and Impact of Retrieval Parameters. Remote Sensing, 11, 750, https://dx.doi.org/10.3390/rs11070750
Dodd, E. M. A., K. L. Veal, D. J. Ghent, M. R. van den Broeke, and J. J. Remedios, 2019: Toward a Combined Surface Temperature Data Set for the Arctic From the Along-Track Scanning Radiometers. Journal of Geophysical Research: Atmospheres, 124, 6718-6736, https://doi.org/10.1029/2019JD030262
Drushka, K., W. E. Asher, J. Sprintall, S. T. Gille, and C. Hoang, 2019: Global Patterns of Submesoscale Surface Salinity Variability. Journal of Physical Oceanography, 49, 1669-1685, https://doi.org/10.1175/JPO-D-19-0018.1
Dukhovskoy, D. S., I. Yashayaev, A. Proshutinsky, J. L. Bamber, I. L. Bashmachnikov, E. P. Chassignet, C. M. Lee, and A. J. Tedstone, 2019: Role of Greenland Freshwater Anomaly in the Recent Freshening of the Subpolar North Atlantic. Journal of Geophysical Research: Oceans, 124, 3333-3360, https://doi.org/10.1029/2018JC014686
Dushaw, B. D., 2019: Ocean Acoustic Tomography in the North Atlantic. Journal of Atmospheric and Oceanic Technology, 36, 183-202, https://doi.org/10.1175/JTECH-D-18-0082.1
Fuentes-Franco, R. and T. Koenigk, 2019: Sensitivity of the Arctic freshwater content and transport to model resolution. Climate Dynamics, 53, 1765-1781, https://doi.org/10.1007/s00382-019-04735-y
Gasparin, F., S. Guinehut, C. Mao, I. Mirouze, E. Rémy, R. R. King, M. Hamon, R. Reid, A. Storto, P.-Y. Le Traon, M. J. Martin, and S. Masina, 2019: Requirements for an Integrated in situ Atlantic Ocean Observing System From Coordinated Observing System Simulation Experiments. Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00083
Gaube, P., D. J. McGillicuddy Jr., and A. J. Moulin, 2019: Mesoscale Eddies Modulate Mixed Layer Depth Globally. Geophysical Research Letters, 46, 1505-1512, https://doi.org/10.1029/2018GL080006
Germineaud, C., J.-M. Brankart, and P. Brasseur, 2019: An Ensemble-Based Probabilistic Score Approach to Compare Observation Scenarios: An Application to Biogeochemical-Argo Deployments. Journal of Atmospheric and Oceanic Technology, 36, 2307-2326, https://doi.org/10.1175/JTECH-D-19-0002.1
Gouretski, V., 2019: A new global ocean hydrographic climatology. Atmospheric and Oceanic Science Letters, 1-4, https://doi.org/10.1080/16742834.2019.1588066
Hennon, T. D., M. H. Alford, and Z. Zhao, 2019: Global Assessment of Semidiurnal Internal Tide Aliasing in Argo Profiles. Journal of Physical Oceanography, 49, 2523-2533, https://doi.org/10.1175/JPO-D-19-0121.1
Holmes, R. M., J. D. Zika, and M. H. England, 2019: Diathermal Heat Transport in a Global Ocean Model. Journal of Physical Oceanography, 49, 141-161, https://doi.org/10.1175/JPO-D-18-0098.1
Huang, C. and Y. Xu, 2019: Spatial and seasonal variability of global ocean diapycnal transport inferred from Argo profiles. Journal of Oceanology and Limnology, 37, 498-512, https://doi.org/10.1007/s00343-019-7290-2
Irrgang, C., J. Saynisch, and M. Thomas, 2019: Estimating global ocean heat content from tidal magnetic satellite observations. Scientific Reports, 9, 7893, https://doi.org/10.1038/s41598-019-44397-8
Kolodziejczyk, N., W. Llovel, and E. Portela, 2019: Interannual Variability of Upper Ocean Water Masses as Inferred From Argo Array. Journal of Geophysical Research: Oceans, 124, 6067-6085, https://doi.org/10.1029/2018JC014866
Langehaug, H. R., A. B. Sandø, M. Årthun, and M. Ilıcak, 2019: Variability along the Atlantic water pathway in the forced Norwegian Earth System Model. Climate Dynamics, 52, 1211-1230, https://doi.org/10.1007/s00382-018-4184-5
Levin, L. A., B. J. Bett, A. R. Gates, P. Heimbach, B. M. Howe, F. Janssen, A. McCurdy, H. A. Ruhl, P. Snelgrove, K. I. Stocks, D. Bailey, S. Baumann-Pickering, C. Beaverson, M. C. Benfield, D. J. Booth, M. Carreiro-Silva, A. Colaço, M. C. Eblé, A. M. Fowler, K. M. Gjerde, D. O. B. Jones, K. Katsumata, D. Kelley, N. Le Bris, A. P. Leonardi, F. Lejzerowicz, P. I. Macreadie, D. McLean, F. Meitz, T. Morato, A. Netburn, J. Pawlowski, C. R. Smith, S. Sun, H. Uchida, M. F. Vardaro, R. Venkatesan, and R. A. Weller, 2019: Global Observing Needs in the Deep Ocean. Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00241
Liang, X., M. Losch, L. Nerger, L. Mu, Q. Yang, and C. Liu, 2019: Using Sea Surface Temperature Observations to Constrain Upper Ocean Properties in an Arctic Sea Ice-Ocean Data Assimilation System. Journal of Geophysical Research: Oceans, 124, 4727-4743, https://doi.org/10.1029/2019JC015073
Liu, C., X. Liang, R. M. Ponte, N. Vinogradova, and O. Wang, 2019: Vertical redistribution of salt and layered changes in global ocean salinity. Nature Communications, 10, 3445, https://doi.org/10.1038/s41467-019-11436-x
Lu, W., H. Su, X. Yang, and X.-H. Yan, 2019: Subsurface temperature estimation from remote sensing data using a clustering-neural network method. Remote Sensing of Environment, 229, 213-222, https://doi.org/10.1016/j.rse.2019.04.009
Lundrigan, S. and E. Demirov, 2019: Mean and Eddy-Driven Heat Advection in the Ocean Region Adjacent to the Greenland-Scotland Ridge Derived From Satellite Altimetry. Journal of Geophysical Research: Oceans, 124, 2239-2260, https://doi.org/10.1029/2018JC014854
Manizza, M., D. Menemenlis, H. Zhang, and C. E. Miller, 2019: Modeling the Recent Changes in the Arctic Ocean CO2 Sink (2006–2013). Global Biogeochemical Cycles, 33, 420-438, https://doi.org/10.1029/2018GB006070
Meyssignac, B., T. Boyer, Z. Zhao, M. Z. Hakuba, F. W. Landerer, D. Stammer, A. Köhl, S. Kato, T. L’Ecuyer, M. Ablain, J. P. Abraham, A. Blazquez, A. Cazenave, J. A. Church, R. Cowley, L. Cheng, C. M. Domingues, D. Giglio, V. Gouretski, M. Ishii, G. C. Johnson, R. E. Killick, D. Legler, W. Llovel, J. Lyman, M. D. Palmer, S. Piotrowicz, S. G. Purkey, D. Roemmich, R. Roca, A. Savita, K. v. Schuckmann, S. Speich, G. Stephens, G. Wang, S. E. Wijffels, and N. Zilberman, 2019: Measuring Global Ocean Heat Content to Estimate the Earth Energy Imbalance. Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00432
Mork, K. A., Ø. Skagseth, and H. Søiland, 2019: Recent Warming and Freshening of the Norwegian Sea Observed by Argo Data. Journal of Climate, 32, 3695-3705, https://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-18-0591.1
Reverdin, G., A. R. Friedman, L. Chafik, N. P. Holliday, T. Szekely, H. Valdimarsson, and I. Yashayaev, 2019: North Atlantic extratropical and subpolar gyre variability during the last 120 years: a gridded dataset of surface temperature, salinity, and density. Part 1: dataset validation and RMS variability. Ocean Dynamics, 69, 385-403, https://doi.org/10.1007/s10236-018-1240-y
Roemmich, D., M. H. Alford, H. Claustre, K. Johnson, B. King, J. Moum, P. Oke, W. B. Owens, S. Pouliquen, S. Purkey, M. Scanderbeg, T. Suga, S. Wijffels, N. Zilberman, D. Bakker, M. Baringer, M. Belbeoch, H. C. Bittig, E. Boss, P. Calil, F. Carse, T. Carval, F. Chai, D. Ó. Conchubhair, F. d’Ortenzio, G. Dall’Olmo, D. Desbruyeres, K. Fennel, I. Fer, R. Ferrari, G. Forget, H. Freeland, T. Fujiki, M. Gehlen, B. Greenan, R. Hallberg, T. Hibiya, S. Hosoda, S. Jayne, M. Jochum, G. C. Johnson, K. Kang, N. Kolodziejczyk, A. Körtzinger, P.-Y. L. Traon, Y.-D. Lenn, G. Maze, K. A. Mork, T. Morris, T. Nagai, J. Nash, A. N. Garabato, A. Olsen, R. R. Pattabhi, S. Prakash, S. Riser, C. Schmechtig, C. Schmid, E. Shroyer, A. Sterl, P. Sutton, L. Talley, T. Tanhua, V. Thierry, S. Thomalla, J. Toole, A. Troisi, T. W. Trull, J. Turton, P. J. Velez-Belchi, W. Walczowski, H. Wang, R. Wanninkhof, A. F. Waterhouse, S. Waterman, A. Watson, C. Wilson, A. P. S. Wong, J. Xu, and I. Yasuda, 2019: On the Future of Argo: A Global, Full-Depth, Multi-Disciplinary Array. Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00439
Smith, G. C., R. Allard, M. Babin, L. Bertino, M. Chevallier, G. Corlett, J. Crout, F. Davidson, B. Delille, S. T. Gille, D. Hebert, P. Hyder, J. Intrieri, J. Lagunas, G. Larnicol, T. Kaminski, B. Kater, F. Kauker, C. Marec, M. Mazloff, E. J. Metzger, C. Mordy, A. O’Carroll, S. M. Olsen, M. Phelps, P. Posey, P. Prandi, E. Rehm, P. Reid, I. Rigor, S. Sandven, M. Shupe, S. Swart, O. M. Smedstad, A. Solomon, A. Storto, P. Thibaut, J. Toole, K. Wood, J. Xie, Q. Yang, and t. W. P. S. G. , 2019: Polar Ocean Observations: A Critical Gap in the Observing System and Its Effect on Environmental Predictions From Hours to a Season. Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00429
Somavilla, R., 2019: Draining and Upwelling of Greenland Sea Deep Waters. Journal of Geophysical Research: Oceans, 124, 2842-2860, https://doi.org/10.1029/2018JC0142490
Srokosz, M. and C. Banks, 2019: Salinity from space. Weather, 74, 3-8, https://doi.org/10.1002/wea.3161
Stensland, A., T. Baumberger, K. A. Mork, M. D. Lilley, I. H. Thorseth, and R. B. Pedersen, 2019: 3He along the ultraslow spreading AMOR in the Norwegian-Greenland Seas. Deep Sea Research Part I: Oceanographic Research Papers, 147, 1-11, https://doi.org/10.1016/j.dsr.2019.04.004
Storto, A., A. Bonaduce, X. Feng, and C. Yang, 2019: Steric Sea Level Changes from Ocean Reanalyses at Global and Regional Scales. Water, 11, 1987, https://doi.org/10.3390/w11101987
Su, H., X. Yang, W. Lu, and X.-H. Yan, 2019: Estimating Subsurface Thermohaline Structure of the Global Ocean Using Surface Remote Sensing Observations. Remote Sensing, 11, 1598, https://doi.org/10.3390/rs11131598
Trenberth, K. E., Y. Zhang, J. T. Fasullo, and L. Cheng, 2019: Observation-Based Estimates of Global and Basin Ocean Meridional Heat Transport Time Series. Journal of Climate, 32, 4567-4583, https://doi.org/10.1175/JCLI-D-18-0872.1
Uotila, P., H. Goosse, K. Haines, M. Chevallier, A. Barthélemy, C. Bricaud, J. Carton, N. Fučkar, G. Garric, D. Iovino, F. Kauker, M. Korhonen, V. S. Lien, M. Marnela, F. Massonnet, D. Mignac, K. A. Peterson, R. Sadikni, L. Shi, S. Tietsche, T. Toyoda, J. Xie, and Z. Zhang, 2019: An assessment of ten ocean reanalyses in the polar regions. Climate Dynamics, 52, 1613-1650, https://doi.org/10.1007/s00382-018-4242-z
Weller, R. A., D. J. Baker, M. M. Glackin, S. J. Roberts, R. W. Schmitt, E. S. Twigg, and D. J. Vimont, 2019: The Challenge of Sustaining Ocean Observations. Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00105
Zuo, H., M. A. Balmaseda, S. Tietsche, K. Mogensen, and M. Mayer, 2019: The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment. Ocean Sci., 15, 779-808, https://doi.org/10.5194/os-15-779-2019
2018
Aluie, H., M. Hecht, and G. K. Vallis, 2018: Mapping the Energy Cascade in the North Atlantic Ocean: The Coarse-Graining Approach. Journal of Physical Oceanography, 48, 225-244, https://doi.org/10.1175/JPO-D-17-0100.1
Barbieux, M., J. Uitz, A. Bricaud, E. Organelli, A. Poteau, C. Schmechtig, B. Gentili, et al., 2018: Assessing the Variability in the Relationship Between the Particulate Backscattering Coefficient and the Chlorophyll a Concentration From a Global Biogeochemical‐Argo Database. Journal of Geophysical Research: Oceans, 123, 1229-1250, https://doi.org/10.1002/2017JC013030
Baringer, M. O., J. Willis, D. A. Smeed, B. I. Moat, S. Dong, W. R. Hobbs, D. Rayner, et al., 2018: Global Oceans: Meridional overturning and oceanic heat transport circulation observations in the North Atlantic Ocean. Bull. Am. Meteorol. Soc., 99, S91 - S93, https://doi.org/10.1175/2018BAMSStateoftheClimate.1
Barton, B. I., Y.-D. Lenn, and C. Lique, 2018: Observed Atlantification of the Barents Sea Causes the Polar Front to Limit the Expansion of Winter Sea Ice. Journal of Physical Oceanography, 48, 1849-1866, https://doi.org/10.1175/JPO-D-18-0003.1
Bashmachnikov, I., T. Belonenko, P. Kuibin, D. Volkov, and V. Foux, 2018: Pattern of vertical velocity in the Lofoten vortex (the Norwegian Sea). Ocean Dynamics, 68, 1711-1725, https://doi.org/10.1007/s10236-018-1213-1
Bittig, H. C., A. Körtzinger, C. Neill, E. van Ooijen, J. N. Plant, J. Hahn, K. S. Johnson, B. Yang, and S. R. Emerson, 2018: Oxygen Optode Sensors: Principle, Characterization, Calibration, and Application in the Ocean. Frontiers in Marine Science, 4, https://doi.org/10.3389/fmars.2017.00429
Bosse, A., I. Fer, H. Søiland, and T. Rossby, 2018: Atlantic Water Transformation Along Its Poleward Pathway Across the Nordic Seas. Journal of Geophysical Research: Oceans, 123, 6428-6448, https://doi.org/10.1029/2018JC014147
Carton, J. A., G. A. Chepurin, and L. Chen, 2018: SODA3: A New Ocean Climate Reanalysis. Journal of Climate, 31, 6967-6983, https://doi.org/10.1175/JCLI-D-18-0149.1
Carton, J. A., G. A. Chepurin, L. Chen, and S. A. Grodsky, 2018: Improved Global Net Surface Heat Flux. Journal of Geophysical Research: Oceans, 123, 3144-3163, https://doi.org/10.1002/2017JC013137
Chatterjee, S., R. P. Raj, L. Bertino, Ø. Skagseth, M. Ravichandran, and O. M. Johannessen, 2018: Role of Greenland Sea Gyre Circulation on Atlantic Water Temperature Variability in the Fram Strait. Geophysical Research Letters, 45, 8399-8406, https://doi.org/10.1029/2018GL079174
Chen, C., Y. Ma, and Y. Liu, 2018: Reconstructing Sound speed profiles worldwide with Sea surface data. Applied Ocean Research, 77, 26-33, https://doi.org/10.1016/j.apor.2018.05.002
Chen, J., B. Tapley, H. Save, M. E. Tamisiea, S. Bettadpur, and J. Ries, 2018: Quantification of Ocean Mass Change Using Gravity Recovery and Climate Experiment, Satellite Altimeter, and Argo Floats Observations. Journal of Geophysical Research: Solid Earth, 123, 10,212-10,225, https://doi.org/10.1029/2018JB016095
Chen, X., S. Liu, Y. Cai, and S. Zhang, 2018: Potential effects of subduction rate in the key ocean on global warming hiatus. Acta Oceanologica Sinica, 37, 63-68, https://doi.org/10.1007/s13131-017-1130-z
Chen, X. and K.-K. Tung, 2018: Global surface warming enhanced by weak Atlantic overturning circulation. Nature, 559, 387-391, https://doi.org/10.1038/s41586-018-0320-y
Cheng, L., G. Wang, J. Abraham, and G. Huang, 2018: Decadal Ocean Heat Redistribution Since the Late 1990s and Its Association with Key Climate Modes. Climate, 6, 91, https://doi.org/10.3390/cli6040091
Cheng, L. and J. Zhu, 2018: 2017 was the warmest year on record for the global ocean. Advances in Atmospheric Sciences, 35, 261-263, https://doi.org/10.1007/s00376-018-8011-z
de Boisséson, E., M. A. Balmaseda, and M. Mayer, 2018: Ocean heat content variability in an ensemble of twentieth century ocean reanalyses. Climate Dynamics, 50, 3783-3798, https://doi.org/10.1007/s00382-017-3845-0
de Jong, M. F., H. Søiland, A. S. Bower, and H. H. Furey, 2018: The subsurface circulation of the Iceland Sea observed with RAFOS floats. Deep Sea Research Part I: Oceanographic Research Papers, 141, 1-10, https://doi.org/10.1016/j.dsr.2018.07.008
Droghei, R., B. Buongiorno Nardelli, and R. Santoleri, 2018: A New Global Sea Surface Salinity and Density Dataset From Multivariate Observations (1993–2016). Frontiers in Marine Science, 5, https://doi.org/10.3389/fmars.2018.00084
Filyushkin, B. N., M. A. Sokolovskiy, and K. V. Lebedev, 2018: Evolution of an Intrathermocline Lens over the Lofoten Basin. The Ocean in Motion: Circulation, Waves, Polar Oceanography, M. G. Velarde, R. Y. Tarakanov, and A. V. Marchenko, Eds., Springer International Publishing, 333-347, https://doi.org/10.1007/978-3-319-71934-4_21.
Fu, L.-L. and D. Roemmich, 2018: Monitoring Global Sea Level Change from Spaceborne and In Situ Observing Systems. The Bridge (National Academy of Engineering), 48, https://www.nae.edu/Publications/Bridge/195218/195285.aspx
Fukumori, I., P. Heimbach, R. M. Ponte, and C. Wunsch, 2018: A Dynamically Consistent, Multivariable Ocean Climatology. Bulletin of the American Meteorological Society, 99, 2107-2128, https://doi.org/10.1175/BAMS-D-17-0213.1
Furue, R., K. Takatama, H. Sasaki, N. Schneider, M. Nonaka, and B. Taguchi, 2018: Impacts of sea-surface salinity in an eddy-resolving semi-global OGCM. Ocean Modelling, 122, 36-56, https://doi.org/10.1016/j.ocemod.2017.11.004
Germe, A., F. Sévellec, J. Mignot, A. Fedorov, S. Nguyen, and D. Swingedouw, 2018: The impacts of oceanic deep temperature perturbations in the North Atlantic on decadal climate variability and predictability. Climate Dynamics, 51, 2341-2357, https://doi.org/10.1007/s00382-017-4016-z
Gouretski, V., 2018: World Ocean Circulation Experiment – Argo Global Hydrographic Climatology. Ocean Sci., 14, 1127-1146, https://doi.org/10.5194/os-14-1127-2018
Huang, B., W. Angel, T. Boyer, L. Cheng, G. Chepurin, E. Freeman, C. Liu, and H.-M. Zhang, 2018: Evaluating SST Analyses with Independent Ocean Profile Observations. Journal of Climate, 31, 5015-5030, https://doi.org/10.1175/JCLI-D-17-0824.1
Huang, B., J. Kennedy, Y. Xue, and H.-M. Zhang, 2018: Global Oceans: Sea surface temperatures in the State of the Climate in 2017. Bull. Am. Meteorol. Soc., 99, S69 - S72, https://doi.org/10.1175/2018BAMSStateoftheClimate.1
Johnson, G. C., J. M. Lyman, T. Boyer, L. Cheng, C. M. Domingues, J. Gilson, et al., 2018: Global Oceans: Ocean heat content in State of the Climate in 2017. Bull. Am. Meteorol. Soc., 99, S72 - S77, https://doi.org/10.1175/2018BAMSStateoftheClimate.1
Johnson, G. C., J. Reagan, J. M. Lyman, T. Boyer, C. Schmid, and R. Locarnini, 2018: Global Oceans: Salinity in the State of the Climate in 2017. Bull. Am. Meteorol. Soc., 99, S77 - https://doi.org/10.1175/2018BAMSStateoftheClimate.1
Lauvset, S. K., A. Brakstad, K. Våge, A. Olsen, E. Jeansson, and K. A. Mork, 2018: Continued warming, salinification and oxygenation of the Greenland Sea gyre. Tellus A: Dynamic Meteorology and Oceanography, 70, 1-9, https://doi.org/10.1080/16000870.2018.1476434
Le Vine, D., E. Dinnat, T. Meissner, F. Wentz, H.-Y. Kao, G. Lagerloef, and T. Lee, 2018: Status of Aquarius and Salinity Continuity. Remote Sensing, 10, 1585, https://doi.org/10.3390/rs10101585
Liu, Y., W. Wang, and A. Kumar, 2018: Multiweek Prediction Skill Assessment of Arctic Sea Ice Variability in the CFSv2. Weather and Forecasting, 33, 1453-1476, https://doi.org/10.1175/WAF-D-18-0046.1
Mackay, N., C. Wilson, J. Zika, and N. P. Holliday, 2018: A Regional Thermohaline Inverse Method for Estimating Circulation and Mixing in the Arctic and Subpolar North Atlantic. Journal of Atmospheric and Oceanic Technology, 35, 2383-2403, https://doi.org/10.1175/JTECH-D-17-0198.1
Marsh, R., G. Bigg, Y. Zhao, M. J. Martin, J. R. Blundell, S. A. Josey, E. Hanna, and V. Ivchenko, 2018: Prospects for seasonal forecasting of iceberg distributions in the North Atlantic. Natural Hazards, 91, 447-471, https://doi.org/10.1007/s11069-017-3136-4
Olmedo, E., C. Gabarró, V. González-Gambau, J. Martínez, J. Ballabrera-Poy, A. Turiel, M. Portabella, S. Fournier, and T. Lee, 2018: Seven Years of SMOS Sea Surface Salinity at High Latitudes: Variability in Arctic and Sub-Arctic Regions. Remote Sensing, 10, 1772, https://dx.doi.org/10.3390/rs10111772
Pfeffer, J., P. Tregoning, A. Purcell, and M. Sambridge, 2018: Multitechnique Assessment of the Interannual to Multidecadal Variability in Steric Sea Levels: A Comparative Analysis of Climate Mode Fingerprints. Journal of Climate, 31, 7583-7597, https://doi.org/10.1175/JCLI-D-17-0679.1
Raj, R. P., J. E. Ø. Nilsen, J. A. Johannessen, T. Furevik, O. B. Andersen, and L. Bertino, 2018: Quantifying Atlantic Water transport to the Nordic Seas by remote sensing. Remote Sensing of Environment, 216, 758-769, https://doi.org/10.1016/j.rse.2018.04.055
Roach, C. J., D. Balwada, and K. Speer, 2018: Global Observations of Horizontal Mixing from Argo Float and Surface Drifter Trajectories. Journal of Geophysical Research: Oceans, 123, 4560-4575, https://doi.org/10.1029/2018JC013750
Storto, A., P. Oddo, A. Cipollone, I. Mirouze, and B. Lemieux-Dudon, 2018: Extending an oceanographic variational scheme to allow for affordable hybrid and four-dimensional data assimilation. Ocean Modelling, 128, 67-86, https://doi.org/10.1016/j.ocemod.2018.06.005
Strobach, E., A. Molod, G. Forget, J.-M. Campin, C. Hill, D. Menemenlis, and P. Heimbach, 2018: Consequences of different air-sea feedbacks on ocean using MITgcm and MERRA-2 forcing: Implications for coupled data assimilation systems. Ocean Modelling, 132, 91-111, https://doi.org/10.1016/j.ocemod.2018.10.006
Su, H., W. Li, and X. H. Yan, 2018: Retrieving Temperature Anomaly in the Global Subsurface and Deeper Ocean From Satellite Observations. Journal of Geophysical Research: Oceans, 123, 399-410, https://doi.org/10.1002/2017JC013631
Sun, W., J. Wang, J. Zhang, Y. Ma, J. Meng, L. Yang, and J. Miao, 2018: A new global gridded sea surface temperature product constructed from infrared and microwave radiometer data using the optimum interpolation method. Acta Oceanologica Sinica, 37, 41-49, https://doi.org/10.1007/s13131-018-1206-4
Tesdal, J.-E., R. P. Abernathey, J. I. Goes, A. L. Gordon, and T. W. N. Haine, 2018: Salinity Trends within the Upper Layers of the Subpolar North Atlantic. Journal of Climate, 31, 2675-2698, https://doi.org/10.1175/JCLI-D-17-0532.1
Thompson, P. R., M. A. Merrifield, E. Leuliette, W. Sweet, D. P. Chambers, B. D. Hamlington, S. Jevrejeva, et al., 2018: Global Oceans: Sea level variability and change. Bull. Am. Meteorol. Soc., 99, S84 - S87, https://doi.org/10.1175/2018BAMSStateoftheClimate.1
Tozuka, T., S. Ohishi, and M. F. Cronin, 2018: A metric for surface heat flux effect on horizontal sea surface temperature gradients. Climate Dynamics, 51, 547-561, https://doi.org/10.1007/s00382-017-3940-2
Tung, K.-K. and X. Chen, 2018: Understanding the Recent Global Surface Warming Slowdown: A Review. Climate, 6, 82, https://doi.org/10.3390/cli6040082
Venkatesan, R., A. Tandon, D. Sengupta, and K. N. Navaneeth, 2018: Recent Trends in Ocean Observations. Observing the Oceans in Real Time, R. Venkatesan, A. Tandon, E. D'Asaro, and M. A. Atmanand, Eds., Springer International Publishing, 3-13, https://doi.org/10.1007/978-3-319-66493-4_1.
von Schuckmann, K., P.-Y. Le Traon, N. Smith, A. Pascual, P. Brasseur, K. Fennel, et al., 2018: Copernicus Marine Service Ocean State Report. Journal of Operational Oceanography, 11, S1-S142, https://doi.org/10.1080/1755876X.2018.1489208
Wang, G., L. Cheng, J. Abraham, and C. Li, 2018: Consensuses and discrepancies of basin-scale ocean heat content changes in different ocean analyses. Climate Dynamics, 50, 2471-2487, https://doi.org/10.1007/s00382-017-3751-5
Wei, T., J. Li, X. Rong, W. Dong, B. Wu, and M. Ding, 2018: Arctic Climate Changes Based on Historical Simulations (1900‒2013) with the CAMS-CSM. Journal of Meteorological Research, 32, 881-895, https://doi.org/10.1007/s13351-018-7188-5
Wu, B., T. Zhou, and F. Zheng, 2018: EnOI‐IAU Initialization Scheme Designed for Decadal Climate Prediction System IAP‐DecPreS. Journal of Advances in Modeling Earth Systems, 10, 342-356, https://doi.org/10.1002/2017MS001132
Xing, X.-G., H. Claustre, E. Boss, and F. Chai, 2018: Toward deeper development of Biogeochemical-Argo floats. Atmospheric and Oceanic Science Letters, 11, 287-290, https://doi.org/10.1080/16742834.2018.1457932
Yin, J., J. Overpeck, C. Peyser, and R. Stouffer, 2018: Big Jump of Record Warm Global Mean Surface Temperature in 2014–2016 Related to Unusually Large Oceanic Heat Releases. Geophysical Research Letters, 45, 1069-1078, https://doi.org/10.1002/2017GL076500